New relationships among science, philosophy and religious studies

  • Antonino Drago
Keywords: Nicholas Cusanus, Not-Other, Intuitionist logic, Actual or potential infinity, Classical or constructive mathematics

Abstract

In past times some religious studies built deductive theories managed by classical logic. On the basis of recent interpretations of Nicholas Cusanus’ philosophical and logical thought it is shown that religious studies also can consistently use non-classical logic (intuitionist and modal ones). It was proved that through the intuitionist logic the main Christian teachings (enemy’s love, Beatitudes, original sin) acquire full, rational meanings and that the main two dogmas of Christian faith result not only without contradictions but also perfectly rational. In this light it is no longer true that sciences are the only rational studies and religious studies are based on imagination, intuition, analogy, and metaphor; both can distinguish within their use of natural language at least two different logics, the classical and the intuitionist, and moreover they can rigorously reason. In addition, again in the wake of Cusanus, the dichotomy between actual infinity and potential infinity is recognized important for the Abrahamic religious studies, which always well-distinguish them as belonging respectively and distinctly to God and to man. Since half a century this dichotomy was formalized in two different formulations of the entire mathematics, the classical and the constructive formulation. Consequently, in religious studies there exist two dichotomies, which also turn out to be the foundations of the natural sciences and (according to Leibniz) of the activity of human reason. Then the interdisciplinary comparison between science, philosophy and religious studies is much more rich and fruitful than in past times, because it takes into account that 1) the foundations of both are pluralist and 2) the latter ones can also be well-formalized according to both logic and mathematics.

References

Beth, W. (1959), Foundations of Mathematics, North-Holland, Amsterdam.

Birkhoff, G. and von Neumann, J. (1936), «The Logic of Quantum Mechanics», in The Annals of Mathematics, 37, pp. 823-843. http://dx.doi.org/10.2307/1968621

Bishop, E. (1967), Foundations of Constructive Mathematics, Mc Graw-Hill, New York.

Cassirer, E. (1927), Individuum und Cosmos in der Philosophie der Reinaissance, Teubner, Darmstadt (trad. it., Individuo e cosmo nella filosofia del Rinascimento, Bollati Boringhieri, Torino 2012).

Cusano, N. (1449), Apologia doctae ignorantiae (Engl. tr.. in the site of Jasper Hopkins https://jasper-hopkins.info/Apologia12-2000.pdf)

Cusano, N. (1462), De non aliud (Engl. tr. https://jasper-hopkins.info/NA12 2000.pdf)

Cusanus, N. (1463), De Venatione Sapientiae (Engl. tr. https://jasperhopkins.info/VS12-2000.pdf).-

Cusano, N. (1972), Opere Filosofiche, UTET, Torino.

De Luise, V., and Drago, A. (1990), L’organizzazione della teoria e la logica in Galilei, in F. Bevilacqua (ed), Atti XI Congr. Naz. Storia Fisica Trento, La Goliardica, Pavia, pp. 123-140.

Drago, A. (2012), Pluralism in Logic: The Square of Opposition, Leibniz’ Principle of Sufficient Reason and Markov’s principle, in J.-Y. Béziau and D. Jacquette (eds), Around and Beyond the Square of Opposition, Birkhaueser, Basel 2012, pp. 175-189.

Drago, A. (2017), La pluralité des noms de Dieu selon Nicolas de Cues : leur progressive précision logique, in Pasqua H. (ed), Infini et Altérité dans l’OEuvre de Nicolas de Cues (1401-1464), Peeters, Louvain, pp. 133-162.

Drago, A. (2019), «Intuitionist reasoning in the tri-unitarian theology of Nicholas of Cues (1401-1464)», in Journal of Logics and their Applications, 6, no. 6, pp. 1143-1186,

Dummett, M. (1977), Elements of Intuitionism, Oxford U.P., Oxford.

Flasch, K. (2008), Nikolaus Von Kues. Geschichte Einer Entwicklung, Klostermann, Frankfurt (trad. it. Niccolò Cusano. Lezioni introduttive a un’analisi genetica del suo pensiero, Aragno, Torino 2011).

Gabriel, L. (1970), «Il pensiero dialettico in Cusano e in Hegel», in Filosofia, 21, pp. 537-547.

Goedel K. (1931), Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, in Collected Works, Oxford University Press, 1986, 1, pp. 144–195.

Heyting, A. (1930), «Die formalen Regeln der intuitionistischen Logik I», in Sitzungsberichte der Preussischen Akademie der Wissenschaften, pp. 42–56 (Eng. trans. in Mancosu P. (ed.), From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s, Oxford University Press, Oxford 1998, pp. 311–327).

Hopkins, J., http://www.jasper-hopkins.info/

Kolmogorov, A.N. (1932), «Zur Deutung der Intuitionistischen Logik», in Math. Zeitfr., 35, pp. 58-65 (Engl. transl. in Mancosu P. (ed.), From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s, Oxford University Press, Oxford 1998, pp. 328-334).

Lanza del Vasto (1959), Les Quatre Fléaux, Denoël, Paris (Excerpts in Making straight the way to Lord, Knopf, New York 1972, pp. 190-229).

Leibniz, G.W. (1686), Letter to Arnaud, 14th July 1686, Gehrh., II, Q. Opusc. 402, 513.

Markov, A.A. (1962), «On constructive mathematics», in Tr. Mat. Inst. Steklova, 67, pp. 8–14 (Eng. transl. in Am. Math. Soc. Transl., 98(2), 1971, pp. 1-9).

Nicolai de Cusa (1932-2006), Opera omnia, Leipzig-Hamburg.

Prawitz, D., Melmnaas, P.-E. (1968), «A survey of some connections between classical intuitionistic and minimal logic», in Schmidt, H.A., Schuette, K., Thiele, E.-J. (eds), Contributions to Mathematical Logic, North-Holland, Amsterdam, pp. 215-230.

Reale, G. (2009), «Henologia» e «Ontologia»: i due tipi di metafisica creati dai Greci, in A. Drago e P. Trianni (eds), La Filosofia di Lanza Del Vasto. Un ponte tra Occidente e Oriente, Il grande vetro/Jaca book, Milano, pp. 153-164.

Santinello, G. (1987), Introduzione a Nicolò Cusano, Laterza, Bari.

Wyller, E.A. (1997), The discipline of oenology: a synopsis, in Wyller E.A., Henologische Perspektiven II: zu ehren Egil A. Wyllers, Brill, Leiden, pp. 5-12.

Published
2023-07-19
How to Cite
Drago, A. (2023) “New relationships among science, philosophy and religious studies”, Rivista Italiana di Filosofia del Linguaggio, 17(1). doi: 10.4396/06202311.