Enunciation and topic/comment structure: the offensive replies to Pope Francis’ tweets

  • Francesco Galofaro
  • Zeno Toffano
Keywords: semiotics, quantum semantics, information, retrieval, machine learning, sentiment analysis, hate speech, conspiracy theory


Sentiment analysis is an automatised technique of analysis aimed to measure the “polarity” and the “subjectivity” of large corpora of messages. The case study of the present paper consists of a selection of Pope Francis’ tweets on ecological, social, religious themes and the relative polemic replies. In the degree of agreement/disagreement in response to a tweet, the referential function is not relevant; the emotive and conative functions prevail. The political strategies aimed at corroborating or refuting claims in terms of “fact checking” seem not relevant to these forms of communication based on personal enunciation, on the relation between the two simulacra “me” and “you”, and on the manifestation of one's own comment with respect to a topic. Furthermore, the techniques aimed at detecting the presence of hate speeches to apply, possibly, a precautionary censorship are lexical-sensitive, and fail to consider the context in which words co-occur. Finally, the paper presents a technique of analysis based on quantum information retrieval which can provide new insights on the relation between hashtag, address sign, topic, and reply.


Beccaria, Gian Luigi (1994), Dizionario di linguistica e di filologia, metrica, retorica, Einaudi, Torino 2004.

Ceriani, Giulia (2015), Reputazione, popolarità, sentiment: discorsi sul sesso in rete e problematiche di ricerca integrate, in Ferraro Guido e Lorusso Anna Maria, a cura di, Nuove forme di interazione dal Web al Mobile, Libellula edizioni, Lecce, pp. 53-52.

Davidson, Thomas, Warmsley, Dana, Macy, Michael W., and Weber, Ingmar (2017), «Automated Hate Speech Detection and the Problem of Offensive Language», in ICWSM, https://arxiv.org/pdf/1703.04009.pdf

Eco, Umberto (2003), Dire quasi la stessa cosa: esperienze di traduzione, Bompiani, Milano 2013 (ebook version).

Ferraro, Guido (2019), Semiotica 3.0: 50 idee-chiave per un rilancio della scienza della significazione, Aracne, Roma.

Galofaro, Francesco, Toffano, Zeno, Doan, and Bich-Liên (2019), «Semantic Quantum Correlations in Hate Speeches», in Rivista Italiana di Filosofia del Linguaggio, SFL - Language and emotions, pp. 370-383.

Greimas, Algirdas J., and Courtés, Joseph (1979), Sémiotique: dictionnaire raisonné de la théorie du langage, Hachette, Paris (Semiotics and Language: An Analytical Dictionary, Indiana University Press, Bloomington 1982).

Hjelmslev, Louis (1943), Omkring sprogteoriens grundlaeggelse, Akademisk forlag. Copenaghen (Prolegomena to a theory of language, transl. by Francis Madison Whitfield, University of Wisconsin, 1969).

Hjelmslev, Louis (1954), «La stratification du langage», in Word, 10, pp. 163-188.

Melucci, Massimo (2015), Introduction to Information Retrieval and Quantum Mechanics, Springer, Berlin.

Mortara Garavelli, Bice (1988), Manuale di retorica, Bompiani, Milano 2003.

Nockleby, John T. (2000), Hate Speech, in Leonard W. Levy, Kenneth L. Karst et al., Encyclopedia of the American Constitution, Macmillan, New York, pp. 1277-1279.

Peverini, Paolo, Lorusso, Anna Maria (2017), Il racconto di Francesco: la comunicazione del Papa nell’era della connessione globale, Luiss University Press, Roma.

Santangelo, Antonio (2015), Twitter e l’analisi semiotica di un programma televisivo, in Guido Ferraro e Anna Maria Lorusso (2015), Nuove forme di interazione dal Web al Mobile, Libellula edizioni, Lecce, pp. 67-88.

Van Rijsbergen, Cornelis J. (2004), The Geometry of Information Retrieval, Cambridge University Press, Cambridge UK.

Wittgenstein, Ludwig (1922), Tractatus Logico-Philosophicus, Kegan Paul, ed. by, Basil Blackwell, Oxford 1961.

How to Cite
Galofaro, F. and Toffano, Z. (2022) “Enunciation and topic/comment structure: the offensive replies to Pope Francis’ tweets ”, Rivista Italiana di Filosofia del Linguaggio. doi: 10.4396/SFL2021A23.

Most read articles by the same author(s)