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Abstract Neurosemantics is a relatively new approach to investigating the 

construction of linguistic meaning. In recent years, neurosemantics has been used in 

two different ways. One regards the meaning of the electrical and the chemical 

activities going on in neural circuits, or according to what we call the “the semantics 

of neurons” approach. The second, regards the type of semantics studied for years in 

philosophy: the meaning of language, but with the added intention of explaining in 

neural computational terms, what happens when people listen to and understand 

utterances. We think neurosemantics, understood as the construction of linguistic 

meaning in neural terms, requires an assumption of continuity.  This is because the 

physiological strategies upon which language are based are no different in nature, to 

those by which neurons create non-linguistic conceptual systems. This continuity can 

subsist defending two different controversial notions, that of representation and 

computation.   

In our work, we explore neurosemantics according to the second sense or approach 

mentioned above, but in doing so, we address much of the first sense or approach as 

well, in that we believe that the capacity of neural circuits in humans to support 

linguistic meaning, hinges on their peculiar role of coding experience.  In this paper, 

we illustrate examples of linguistic phenomena that can be explained through the 

employment of these two concepts and briefly describe neurocomputational models 

that have simulated how this phenomena might be instantiated in the brain. 
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0. Introduction1  

Neurosemantics is one relatively new approach to investigating the construction of 

linguistic meaning. How does this approach intersect with the more traditional 

notions of semantics, and in particular those more commonly accepted in philosophy 

of language?  Answering these questions is part of our ongoing research endeavor. 

Our particular contribution to neurosemantics, which is the project the present paper 

is based, regards concrete neurocomputational proposals grounded on the joint 

concepts of representation and computation.  It is an applied and practical one, based 

on a mathematical foundation, which in turn is grounded in how the brain computes.  

We do this through addressing aspects of linguistic semantics, or how linguistic 

meaning is constructed, first in purely neurocomputational terms, and second, 

through the identification of the principles upon which neurocomputational models 

of linguistic meaning can be constructed, and their corresponding neural bases.  

 

 

1. Neurosemantics in two different senses 

In recent years, in scientific contexts, neurosemantics has been used in two different 

ways. One regards the meaning of the electrical and the chemical activities taking 

place in neural circuits, or what we call the “the semantics of neurons” approach.  

This is the use Churchland (2001), Ryder (2004), or Breidbach (2007) make of the 

term. The second, regards the type of semantics that has been studied for years in 

philosophy: the meaning of linguistic expressions, but with the added intention of 

explaining in neural computational terms, what happens when people listen to and 

understand utterances. This is the main use Pulvermüller (2012) makes of the term 

neurosemantics, and it is not much different from that made by Feldman (2006), 

even if the latter never explicitly uses it. We call this the “semantics from neurons” 

approach. 

Neurosemantics, in the first sense mentioned above, aims to investigate the meaning 

of the phenomena that takes place in the neural system such as electrical impulses, 

chemical reactions, and morphological modifications of cells. In this case semantics 

stands for those explanations that focus on factors that are external to the physical 

brain itself, in that they invoke or make use of notions such as that of neural 

representation. Neural representation is an idea according to which, neurons serve as 

devices for the mental construction of the external world.  This notion only 

marginally concerns neuroscience, while it is central to neurophilosophy.  In fact, 

this is the sense Paul Churchland refers to when he uses the term. 

In the second case, neurosemantics instead regards the endeavor of accounting for 

language in terms of neural processes.   

One of the first efforts to do so came from the connectionist movement of the 80’s 

and 90’s. This movement, however, avoided falling under the umbrella of the term. 

This was most likely due to the fact that its proponents were busy opposing the 

symbolic views of Fodor and Chomsky, by providing abstract non-symbolic 

computations in their stead. 

In more recent years, the embracing of the biophysical behavior of neurons as the 

fundamental basis for understanding and explaining the semantic constructions of 

language, has instead been Friedmann Pulvermüller’s primary objective. He has used 
                                                           
1 Although the authors have equally contributed to the ideas and contents of this work, Author 1 was 

responsible for writing sections 0, 1, 3, 5, 6 and 8, and Author 2 for sections 2 and 4.  
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neurosemantics as the way of responding to the second question we touched upon 

above: what are the neuronal processes behind semantics, or how is linguistic 

meaning derived and/or constructed from the functioning of neurons?  

Before we go further, we would like to underline that a terminological caveat is in 

order here.  For us the expression “functioning of neurons” is a condensed way of 

addressing the complexity of factors involved in the computational properties of the 

brain, that instead have been formalized elsewhere (see PICCININI 2015), and that 

are not confined inside the physical boundaries of neural cells only. 

After having used the dichotomy of the “semantics of neurons” and the “neurons of 

semantics” as an argumentative device, we now escape it, sustaining that it is 

difficult to fully embrace one without having to deal with questions regarding the 

other. We think neurosemantics understood as the construction of linguistic meaning 

in neural terms, requires an assumption of continuity. This is based on the 

consideration that, the physiological strategies upon which language are based are no 

different in nature, to those by which neurons create non-linguistic conceptual 

systems. This continuity can subsist defending two different controversial notions, 

that of representation and computation.   

In our work, we explore neurosemantics according to the second sense or approach 

mentioned above, but in doing so, we address much of the first sense or approach as 

well, in that we believe that the capacity of neural circuits in humans to support 

linguistic meaning, hinges on their peculiar role in coding entities and facts of the 

world. Even if combining sequences of sounds for conveying meaning through 

words and sentences is a strategy that is exploited by humans only, its realization by 

way of neural circuits appears to be rooted in their disposition to code for things in 

the world, something that is shared in a wide variety of forms, with other animals.   

 

2. Computation and representation  

A road that has been particularly favored in cognitive science is that in which, mind 

semantics is explained by combining the two ideas of computation and 

representation. Whatever content is held in a mind, it is done through the 

manipulation of certain basic representative entities, and in accordance with a set of 

transformation rules. This is known as the Computational and Representational 

Theory of the Mind, championed by (FODOR 1975, 1987). Its original version 

argues that computation works on a language-like syntax and a compositional 

semantics basis over symbols and, to that extent, amounts to a language of thought. 

Even if computation and representation are often held as necessarily interwoven, as 

Fodor’s famous slogan (1981) «no computation without representation» indicates, 

they deserve separate considerations.  

The most commonly accepted and precise reference to computation, was originally 

proposed by Putnam (1960).  Its mathematical foundation was within the realm of 

computer science (CHURCH 1941, KLEENE 1936; TURING 1936), and became 

widely accepted in cognitive science. When moving into the area of neurosemantics, 

the computer science framework remains important, but it is not sufficient in order to 

articulate what computation is and how it works. A basic tenet in neurophilosophy, 

since (P. S. CHURCHLAND and SEJNOWSKI 1994; SEJNOWSKI, KOCH, and 

CHURCHLAND 1988) has been that the essential activity of neurons is indeed that 

of computing, but it is a sort of computation that may significantly depart from the 

mathematical framework of computation developed in computer science. Neural 

computation has gradually been established as both a means to a better understanding 
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of neural functioning by computational tools, and a way of assessing the genuine sort 

of computation that neural systems perform (DAYAN and ABBOTT 2001). At the 

same time, a great deal of philosophical effort has been made to refine notions of 

computation that are valid for both computers and minds (FRESCO 2014; 

MILKOWSKI 2013; PICCININI 2015). One of the best available accounts, provided 

by Piccinini (2015), makes use of the concept of vehicles upon which computation is 

performed, defined as entities or variables that can change state according to rules. 

Computation would then be a manipulation of vehicles according to those rules that 

involve vehicle properties and, specifically, differences between different portions of 

the vehicles, including their temporal changes. A fundamental constraint on vehicles 

is that they need to be “medium independent”, their manipulating rules should obey 

differences between portions of the vehicles, along specified dimensions, but should 

be insensitive to any of the concrete physical properties of the vehicles. Thanks to 

the concept of vehicles, it is possible to give a more rigorous definition of digital 

computation, as a generic computation whose vehicles are strings of digits, 

macroscopic states whose type can be reliably and unambiguously distinguished by 

the systems of other macroscopic types, with the constraint that digit types should be 

finite in number. Neurons comply with the definition of computation based on 

vehicles, but not that of digital computation, because any attempt to reduce trains of 

action potentials to strings of digits, would fail to meet the finite constraint on the 

number of types, due to the continuous time of the events.  

In addition to the ontological question, neural computation raises epistemological 

ones: can a computational description of neural behavior be explanatory of the 

phenomena associated with such behavior? More specifically, can computational 

descriptions of neural activities explain semantic phenomena? An answer to the 

general question has been sought inside the framework of mechanistic explanation, 

and is among the most accepted in biology in general (BRAILLARD and 

MALATERRE 2015), and in neuroscience in particular (CRAVER 2007). 

In brief, mechanistic explanations require the identification of components of the 

system to be explained, the definition of the functions of each component, and the 

relations between functions in producing the set of behaviors of the system 

(BECHTEL & RICHARDSON 1993). One of the most elaborate attempts to 

reconcile neural computation with mechanistic explanation is attributed to Kaplan 

(2011) and Kaplan and Craver (2011). They proposed the 3M (model-mechanism-

mapping) constraint. A model of a target phenomenon explains that phenomenon to 

the extent that:  

1. The variables in the model correspond to identifiable components, activities, and 

organizational features of the target mechanism that produces, maintains, or 

underlies the phenomenon;  

2. The dependencies posited among these variables in the model correspond to causal 

relations among the components of the target mechanism. 

This constraint does not need to be strict, it is compatible with models where certain 

details are omitted, its guiding principle: computational models whose design 

principle disregards the structural correspondence between model components and 

external system components are merely predictive models, while in the case in which 

the design is based on such correspondence, they aim at being explanatory models. 

Models that here are suggested to explain certain neurosemantic phenomena attempt 

to meet the 3M criteria, paying close attention to the plausible correspondence of 

their components with brain components.  



RIFL/SFL (2017): 87-102 

DOI: 10.4396/SFL201707 

__________________________________________________________________________________ 

91  

In the Computational and Representational Theory of the Mind, much less theorizing 

can be found for representation than that seen for computation. Fodor (1990) 

pioneered the view that has come to be known as informational atomism, that is, that 

basic mental representations are simple unstructured “atomic” symbols. An opposing 

view, one that has found more consensus among psychologists, and is consistent with 

most twentieth century philosophy, is that representations are structured entities 

(CUMMINS 1989), in two different senses: first, in possessing conditions of every 

content of representation, other contents are involved, second, every content of 

representation is composed by parts, which in turn can be content of other 

representations. For example, in the domain of ANIMALS the representation of 

DOG involves sharing some similarities, but having differences with CAT, and both 

representations are composed of parts, like LEG and TAIL. In addition, structural 

representations retain a longstanding tradition that dates back to antiquity, and found 

clear articulation in Hume (1748), representations should bear some similarity with 

what is represented.  

The foundation of structural representations has had an independent history, one far 

from the domain of computer science. The first attempt to formalize similarity in 

terms of structural relations was thanks to Russell (1927), who introduced the 

concept of relation-number, defined as the class of all relations similar to the given 

relation. For Russell, similarity in terms of relation-number was an abstract theory of 

how a mathematical system can represent aspects of the physical world, but one 

crucial application of this theory was in sensorial perception, therefore, targeting 

mental representations. In the 70s, a new mathematical domain began to be 

developed that followed in the footsteps of Russell’s foundational work on structural 

representations, that of measurement, by Krantz, Luce, Suppes, and Tversky (1971). 

The purpose of this theory was to systematize all kinds of measures, i.e. mappings 

from domains of physical (or economic, social, psychological) stuff, into the 

codomain of numbers. The theory of measurement grew considerably for twenty 

years (LUCE, KRANTZ, SUPPES, and TVERSKY 1990; SUPPES, KRANTZ, 

LUCE and TVERSKY 1989), but, contrary to Russell, had no interest in applying the 

theory to mental representations.  Swoyer (1991) returned to the original aim of 

Russell, and tried to widen the scope of measurement theory to include the domain of 

mental representations. He adopted the same basic definition of representations, that 

requires the establishment of a homomorphism between relations that can be 

identified in the world domain (the represented system), and corresponding relations 

in the (mental) representing codomain.  

The account of structural mental representations based on the theory of measurement 

is affected by several problems, the most serious being the excess of liberalism: there 

can be many trivial domains satisfying the homomorphism requirements, this 

affliction is called panrepresentationalism. Still, this account is defended as being the 

best one available in cognitive science, and for Ramsey (2007) a failure of neural 

representation is exactly the lack of structures adhering to Swoyer’s criteria. Not 

only do we not see particular reasons why neural representation should lack 

structure, as already remarked by others (MORGAN 2014; SHAGRIR 2012; 

SPREVAK 2011), we argue that structural properties are key features that turn 

neural responses into genuine representations. In particular, we will argue that inside 

the cerebral cortex there are known structural organizations that are suitable for 

neurosemantics.  
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3.  Representations in the cortex  

There are reasons to restrict our analysis of neurosemantics to the cerebral cortex, 

even if we are convinced that representational mechanisms not too far from those in 

place in the cortex may be present in other structures of the brain. One reason is that 

the most common and fundamental use of semantics is in behaviors such as 

reasoning, remembering, planning, conversing, which typically take place mainly in 

the cerebral cortex. Moreover, the cortex expresses such a wide range of high level 

functions, from vision (CHALUPA AND WERNER 2003), somatic perception 

(NELSON 2002), language (PULVERMÜLLER 2002), planning and decision 

making (FUSTER 2008), to consciousness (DEHAENE 2014), and moral cognition 

(VERPLAETSE, SCHRIJVER, VANNESTE and BRAECKMAN 2009), all with a 

remarkable uniformity in structure. This suggests a common basic representational 

mechanism. In addition, the cortex is one of the most plastic parts of the brain, a 

fundamental feature in sustaining the formation of semantic representations. Finally, 

there are known organizational principles of the cortex, that provide convenient 

starting points for an explanation of structural representation, that is able to bridge 

the gap between the empirical domain and the representing codomain, left in 

Swoyer’s account.  

Among the distinguishing features of the mammalian cortex there is columnar 

organization, made by cords of cells oriented radially, often supposed to be a sort of 

basic processing circuit (DOUGLAS, MARTIN and WHITTERIDGE 1989; HUBEL 

and WIESEL 1959; MOUNTCASTLE 1957). Columnar organization is coupled 

with the concept of “cortical map”, an organization orthogonal to the columns, along 

the 2-dimensional surface of the cortex (MOUNTCASTLE 1957). In sensory and 

motor areas of the cortex, maps exhibit a topological mapping between the cortical 

space and the distal – sensorial or motor – space (FELLEMAN and VAN ESSEN 

1991).  

In cases where the topological mapping is directly of a spatial nature, like in 

retinotopy, or in somatosensory maps, this relation may well qualify as 

representation by virtue of its structural similarity property. In the primary visual 

area an impressive number of overlapping features have been discovered: retinotopy, 

ocular dominance (Wiesel & Hubel, 1965), orientation selectivity (HUBEL and 

WIESEL 1968), color (TOOTELL, SWITKES, SILVERMAN and HAMILTON 

1988), and spatial frequency (TOOTELL, SILVERMAN, HAMILTON, SWITKES 

AND DE VALOIS 1988). Maps often contain modular repetitions of small segments 

of receptor areas, within a topography at larger scale (KRUBITZER 1995). Even if 

topological order has long been supposed to exist in the homotypical cortex as well 

(KOHONEN and HARI 2000; THIVIERGE and MARCUS 2007), the interpretation 

of contents in higher-level maps seems to involve more complex relations.  

A fruitful concept is that the power of representing information in cortical circuits 

lies in the combination of the activities of many columnar units, a concept often 

named “distributed coding” (HINTON, MCCLELLAND and RUMELHART 1986), 

also known as “population coding”, “vector coding” and close to the “state space 

representation” idea (P. M. CHURCHLAND 1989). We deem this idea to currently 

be the best account of representation at the level of mental concepts and linguistic 

meaning, with populations of cells in high level maps coding for different kinds of 

objects or facts by their concurrent level of firing.  

By using population coding, the structural representation of concepts in the cortex 

can be formalized in a more precise way than the general use of homomorphism in 

the abstract model of Swoyer. Mathematical details of how population coding can 
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work as homomorphic mapping between domains of the external world and the 

codomain of cortical maps can be found in Plebe and De La Cruz (2016: 105).  

 

4. Neurosemantics of visual objects  

In our neurosemantics endeavor we concentrated on investigating the semantics of 

objects whose essential features are captured by their visual appearance, or in other 

words, how the representation (and eventual meaning) of object names could be 

constructed in the brain, from a neural point of view.  We created a series of 

neurocomputational models, the first of which was a sort of prelude to a full blown 

semantics, with a simulation of the full visual pathway that transforms the perception 

of light into the recognition of object categories, together with the auditory pathway, 

in a simulation of the emergence of a first lexicon, that in infants begins with naming 

the objects they most often see. Most of the components of this model, the methods 

used for its development and subsequent analyses, were shared by later models we 

developed. These subsequent models, tapped into a range of semantic phenomena 

typically observed in the early stages of language development in children, such as 

the change in the speed of learning, and the so called “fast-mapping” phenomenon. 

Due to space limitations, in this section, we will limit ourselves to briefly describing 

work done with our initial object recognition model, further details on this as well as 

subsequent models developed can be found in Plebe and De La Cruz (2016).  A 

neurocomputational modeling of color semantics will be discussed below.  

 

4.1 Object recognition model 

The object recognition model simulated the development of the ability to segment 

and recognize objects on one side, and segment and recognize words on the other, 

and the ability to join the two represented entities in linguistic meaning. In real 

infants, these processes take place in the brain at the crossroad between the ventral 

visual and auditory streams of processing, and the portions where these streams of 

processing happen in the brain, are the portions we simulated. We also employed the 

mechanism of coincidence detection because, in our opinion, it is the fundamental 

principle of cortical representation. We took it as the core mechanism for explaining 

the emergence of the semantics of visual objects.  

Coincidence detection is a multilevel mechanism. At the lower level, it is 

implemented in local synaptic connections by their sensitivity to the occurrence of 

simultaneous activation of neighboring units. At an intermediate level, it is 

responsible for building selectivity in units to recurrent patterns, such as oriented 

lines in the visual scene, or classes of phonemes. At the highest level, it captures the 

coincidence of seeing certain objects while hearing the same sound, which then 

becomes associated with the category of similar objects named by the sound, which 

is a word.  

Briefly stated, this initial neurosemantic model was built upon a number of 

Topographica maps, simulating several cortical areas, as well as on a few thalamic 

maps. Initially, the model lacked functional processing, with all synaptic connections 

initialized to small random values. During the experiments the model was exposed to 

a series of stimuli, which reproduced at a small and essential scale, early human 

brain development relevant for its cortical areas. Fig. 1 shows the maps that compose 

the model. 

 



RIFL/SFL (2017): 87-102 

DOI: 10.4396/SFL201707 

__________________________________________________________________________________ 

94  

134 6 Neurosemantics of Visual Objects
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Fig. 6.1 Overall scheme of the object categorization model, the acronyms of all components are

in Table 6.1

Table 6.1 Main parameters of the object categorization model

Map Dimension rA rE rI ! A ! E ! I ! N

LGN Lateral geniculated nucleus 144 144 4:7 – – – – – –

MGN Medial geniculated nucleus 32 32 2:0 – – – – – –

V1 Primary visual cortex 96 96 8.5 1.5 7.0 1.5 1.0 1.0 0.0

V2 Secondary visual cortex 30 30 7.5 8.5 3.5 50.0 3.2 2.5 0.7

VO Ventral occipital 30 30 24.5 4.0 8.0 1.8 1.0 1.0 0.0

A1 Auditory primary cortex 24 24 6.5 1.5 5.0 1.7 0.9 0.9 0.0

LOC Lateral occipital complex 16 16 6.5 1.5 3.5 0.5 1.1 1.7 0.0

STS Superior temporal sulcus 16 16 2.5 1.5 5.5 1.8 1.0 1.2 0.0

PFC Pre-frontal cortex 24 24 2.5 1.5 5.5 1.5 3.2 4.1 0.0

6.1.1 The Cortical MapsStructure

Themodel isbuilt upon anumber of Topographicamaps, simulating several cortical

areas, as well as on a few thalamic maps, shown in Fig. 6.1, the legend of all maps,

together with their main parameters, is provided in Table 6.1. The structure of the

model is based on the accepted perspective that both the visual and the auditory

processing pathways in the brain can be divided into two broad main streams, as

extensively discussed in Sect. 3.4, therefore, for thepurposeof exploring semantics,

it suffices to includeonly theventral areas.

aplebe@unime.it

 
Fig 1. Overall scheme of the object recognition model. LGN-Lateral geniculated nucleus, MGN- 

Medial geniculated nucleus, V1-Primary visual cortex, V2-Secondary visual cortex, VO-Ventral 

occipital, A1-Auditory primary cortex, LOC-Lateral occipital complex, STS-Superior temporal 

sulcus, PFC-Pre-frontal cortex 

 

In a first phase only maps V1, VO, and A1 are plastic, and adapt their synaptic 

connections. The visual stimuli are synthetic random blobs that mimic waves of 

spontaneous retinal activity that are known to play a fundamental role in the 

ontogenesis of the visual system (MASTRONARDE 1983).  Those presented to V1 

are elongated along random directions, to stimulate orientation selectivity, while 

blobs to VO are circular, with constant hues, and random size, position, and 

intensity, in order to induce color constancy. The A1 map was exposed to short trains 

of waves sweeping linearly around a central frequency, with time duration, central 

frequencies and sweeping intervals varied randomly.  

The second phase involved V2 and STS maps as well. The visual stimuli comprised 

pairs of elongated blobs, the same previously used for V1, with a coinciding end 

point. These sort of patterns stimulate the selectivity of units to patterns that are 

slightly more complex than oriented lines, like corners. The auditory stimuli were 

synthesized waves of the 7200 most common English words with length in range 

from 3 to 10 characters, generated using the Festival software (BLACK AND 

TAYLOR 1997).  

In a third phase corresponding to the phase just after eye opening in the newborn, 

natural images were used. In order to include the identification of an object under 

different perspectives, the COIL-100 collection was used, where for each of the 100 

real childhood related objects, 72 different views were available.  

The last phase corresponded with early language acquisition, and the model was 

exposed to events in which, an object is viewed and a label corresponding to its basic 

category was heard simultaneously. The 100 objects were grouped manually into 38 

categories. Certain categories, such as cup or medicine had five exemplars in the 

object collection, while others, such as telephone, had only one exemplar. Each 

category word was converted from text to waves using an American male voice and 

female voice at standard and slow speeds in the Festival software.  

All models were composed by a complex yet extremely simplified hierarchy of 

neural sheets, with respect to the real brain. In each, the emergence of functions 

consistent with their physiological counterpart areas was expected, it was also 

expected that they would contribute to subsequent sheets, up to the higher level. For 

this purpose, the range of stimuli used at the earlier stages of development were a 

subset of all the possible stimuli that could achieve similar functions, in order to 



RIFL/SFL (2017): 87-102 

DOI: 10.4396/SFL201707 

__________________________________________________________________________________ 

95  

simplify the overall experiment. 

At the end of the simulated development, several types of topological organization 

were found in the maps of the model, which are consistent with the known role of 

those maps in cortical hierarchy, such as orientation selectivity in the V1 map, 

response to specific hues regardless of intensity in VO, and responsiveness to angles 

in V2 (for more on the functions that emerge in these lower areas see PLEBE and DE 

LA CRUZ 2016). 

 It is what happened in the higher maps that was most interesting to our discussion on 

the construction of linguistic meaning in the brain. Our analysis of the higher maps 

was made under the assumption of population coding (discussed in Section 4), 

considered by many to be a powerful representational strategy in the cortex. 

In brief, analysis of the population coding in the higher maps of our model, LOC, 

STS and PFC, as a result of our experiments we found what follows (for full details 

on all the experiments done and the results see PLEBE and DE LA CRUZ 2016). 

The LOC map responds to different views of the same object. It assists in the 

recognition of objects under different viewing conditions.  Results of the experiments 

done with the model show the population coding of the LOC map and indicate that it 

is relatively accurate in discriminating objects it was exposed to even when the 

objects were shown according to different angles.  

The STS map codes words for their phonological form. Population coding for some 

of the words used as object labels showed the accuracy of STS in discriminating 

between all the different words learned by the model. 

In the PFC map the coding is amodal in kind and associates information of a visual 

and acoustic nature. Representations in PFC are the result of the tension between the 

normativity in naming things, and the natural similarities of their appearance. Some 

examples resulting from this analysis show separated coding of visual and auditory 

information compared with the full amodal population coding. It was interesting to 

detect a global partitioning in map PFC, with linguistic information more clustered 

on the right side and visual on the left, still with large overlaps. Often the amodal 

coding looks like a combination of the visual and linguistic representations. In other 

cases, one modality seems to be prevalent, maybe because more influenced by the 

linguistic representation, while in others the visual information is predominant. 

What the results with our neurosemantics computational model exploring object 

recognition and early word learning processes indicate, is that from a neural point of 

view, linguistic meaning is initially constructed in the brain thanks to coincidence 

detection mechanisms linked to associative learning processes, along with population 

coding strategies.  

There are those that might not be satisfied with this claim, and that might counter 

argue stating that while neural representations are internal properties of an 

individual, linguistic meaning, on the other hand, is constructed within a community 

of speakers. This line of reasoning might thus lead to asking how we get from the 

internal individual representation of meaning at the neural level, to the social and 

inter-subjective one. 

We address this apparent gap in the next section, where we will describe an 

extension of our model and results obtained, that indicate how internal 

representations develop in individuals that quite possibly reflect their social 

environment and as well as cultural differentiations. 
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5.  Neurosemantics of color terms  

A long-standing question in language development research has concerned the 

contrast between early word learning and the learning of adjectives. Color 

terminology is an interesting and particular case of adjective learning. In our 

neurosemantics research we extended our neurocomputational model to simulate 

neural processes behind the learning of adjectives in linguistic development, and in 

particular color terms. We went further, investigating how both exposure to language 

as well as the range of colors dominant in a particular natural environment might 

influence not only how color terms are learned, but how colors are perceived, a topic 

that is at the center of the historic linguistic relativity debate (for details see PLEBE 

& DE LA CRUZ 2014, 2016: 166-176).  

We adapted the basic architecture of our model as already described in Section 4.1, 

to attempt a simplified, yet biologically plausible simulation of human color 

processing, and a reasonable account of the interaction between color perception and 

language. The precise reconstruction of human color physiology was essential for 

this simulation, therefore, all visual inputs were converted into the three components 

according to the spectral responses of the short, medium, and long wavelength retinal 

receptors. The conversion was performed using empirical data of spectral 

sensitivities of cone receptors gathered by Stockman and Sharpe (2000). The set of 

opponent receptive fields collected in the model under the label LGN is more 

complex than in previous models as well, accounting for all color opponent 

combinations in human vision (STOCKMAN AND BRAINARD 2010).  

 

 
 
Fig. 2. Scheme of the model simulating the semantics of color terms. The components are mostly the 

same as those in the model in Fig. 2, except for the subcortical color components, which here 

correspond to the short, medium, and long wavelength retinal receptors  

 

While the early developmental phase was common to all the models, in the linguistic 

phase three different models were developed, corresponding to the separate effects of 

three different environments, Berinmo, Himba (cultures whose color terminology 

and ability to perceive color was studied by Debi Roberson and colleagues) as well 

as the typical, more varied yet undifferentiated visual world of western cultures. The 

rationale behind these experiments is that we sustain that the ability humans have of 

seeing colors is not only strongly influenced by the biological constraints acting upon 

the visual system of our species, by the color terms our linguistic community teaches 

us to use, but also by the “visual diet” provided to us by our natural environment. We 

therefore, thought it interesting to investigate the possible impact the environment 

might have in the cases of Berinmo and Himba, since the landscapes in which the 
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two groups live are drastically different. In the pre-linguistic phase of development 

of the model, natural images were used as stimuli for the visual pathway, with three 

variations. A neutral one lacks dominant hues, and is typical of many urban 

environments in modern cultures, where the most common objects and scenes seen 

by infants are made by humans, with a wide range of colors, prevailing over the 

natural hue biases of the natural environment, if any. We used random pictures from 

the Flowers and Landscape collections of the McGill Calibrated Color Image 

Database (OLMOS and KINGDOM 2004).  

The other two environments were those typical of Berinmo and Himba that contrary 

to the neutral urban environment, are dominated by specific ranges of hues. The 

Berinmo environment is the luxurious vegetation of Papua New Guinea, along the 

large Sepik river, with villages found under the shadow of tall trees. The Himba 

people live in the open rocky desert lands of Northern Namibia, dominated by warm 

earth-colored hues.  

All pictures of the Berinmo and Himba environments were courtesy of Debi 

Roberson, and were shot during her color terms investigations of these people (see 

Fig. 3 below). The analysis of the spectral differences between the three sets is in 

(PLEBE and DE LA CRUZ 2014). 

 
Fig. 3. Examples of the pictures used to train three different versions of the model, adapted for 

different environments. On the left, neutral pictures from the Flowers and Landscape collections, in 

the middle, the New Guinea – Sepik river environment (Courtesy of Debi Roberson), on the right, the 

Namibia – Kunene district environment (Courtesy of Debi Roberson)  

 

Results showed a clear categorical perception effect for all languages, with the blue-

green boundary, in particular, strongly affecting the English model, while having an 

indifferent effect on Himba and Berinmo. The neurosemantics of color terms 

simulated by the models briefly discussed, seem to corroborate the relativist view 

(for more details see PLEBE & DE LA CRUZ 2014; 2016: 166-176). We certainly 

believe that the neural mechanisms of human vision, place important constraints on 

the construction of a lexical system of color terms, but these constraints would allow 

a large variety of color categories, which would depend on the history of our 

languages as well as our cultures, and perhaps partly, on our physical environments. 

 

 

6.  Conclusions  

The neurosemantic enterprise can be considered a child of our neuroscientific era. It 

tackles long standing questions regarding the relationship between language and the 

mind, but it does so, not only in a brain-inspired but brain-informed manner. Only in 

recent years has it become feasible to construct neurocomputational models that 

reflect brain representational mechanisms, as those briefly touched upon here, with 

components corresponding, at least in part, to relevant cortical and subcortical areas 

of the brain. Future progress in the field will have to address further the 
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neuromechanics of the brain and provide explanations on the why and how different 

areas of the brain (as well as the body through sensorimotor processes) are involved 

in the construction of linguistic meaning and the representation and processing of 

that meaning. Of course, a number of challenges are already present and even more 

are waiting, but the future for a consolidated and mature neurosemantics looks 

promising. 
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